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Abstract

There are widespread fears that conversational AI could soon exert unprecedented
influence over human beliefs. Here, in three large-scale experiments (N=76,977),
we deployed 19 LLMs—including some post-trained explicitly for persuasion—to
evaluate their persuasiveness on 707 political issues. We then checked the factual
accuracy of 466,769 resulting LLM claims. Contrary to popular concerns, we show
that the persuasive power of current and near-future AI is likely to stem more from
post-training and prompting methods—which boosted persuasiveness by as much as
51% and 27% respectively—than from personalization or increasing model scale. We
further show that these methods increased persuasion by exploiting LLMs’ unique
ability to rapidly access and strategically deploy information and that, strikingly,
where they increased AI persuasiveness they also systematically decreased factual
accuracy.

Introduction

Academics, policymakers and technologists fear that AI may soon be capable of exerting substantial persuasive
influence over people [36, 7, 31, 49, 16, 23, 43, 3, 29, 22, 37, 30, 15]. Large language models (LLMs) can
now engage in sophisticated interactive dialogue, enabling a powerful mode of human-to-human persuasion
[5, 33, 32] to be deployed at unprecedented scale. However, the extent to which this will impact society is
unknown. We do not know how persuasive AI models can be, what techniques increase their persuasiveness,
and what strategies they might use to persuade people. For example, as compute resources continue to
grow, models could become ever more persuasive, mirroring the ‘scaling laws’ observed for other capabilities.
Alternatively, specific choices made during model training, such as the use of highly curated datasets, tailored
instructions, or user personalization might be the key enablers of ever greater persuasiveness. Here, we set out
to understand what makes conversational AI persuasive and to define the horizon of its persuasive capability.
To do so, we examine three fundamental research questions related to distinct risks. First, if the persuasiveness
of conversational AI models increases at a rapid pace as models grow larger and more sophisticated, this could
confer a substantial persuasive advantage to powerful actors who are best able to control or otherwise access
the largest models, further concentrating their power. Thus, we ask: are larger models more persuasive?
(RQ1). Second, because LLM performance in specific domains can be optimized by targeted post-training
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techniques, as has been done in the context of general reasoning or mathematics [44, 63, 35], even small
open-source models—many deployable on a laptop—could potentially be converted into highly persuasive
agents. This could broaden the range of actors able to effectively deploy AI to persuasive ends, benefiting
those who wish to perpetrate Coordinated Inauthentic Behavior for ideological or financial gain, foment
political unrest among geopolitical adversaries, or destabilize information ecosystems [22, 21, 61]. Thus, we
ask: to what extent can targeted post-training increase AI persuasiveness? (RQ2). Third, LLMs deployed to
influence human beliefs could do so by leveraging a range of potentially harmful strategies, such as exploiting
individual-level data for personalization [51, 39, 49, 56, 25] or by using false or misleading information [31],
with malign consequences for public discourse, trust and privacy. Thus, we ask: what strategies underpin
successful AI persuasion? (RQ3).
We answer these questions using three large-scale survey experiments, across which 76,977 participants
engaged in conversation with one of 19 open- and closed-source LLMs that had been instructed to persuade
them on one issue from a politically balanced set of 707 issues. The sample of LLMs in our experiments spans
more than four orders of magnitude in model scale and includes several of the most advanced (“frontier”)
models as of May 2025: GPT-4.5, GPT-4o, and Grok-3-beta. In addition to model scale, we examine the
persuasive impact of eight different prompting strategies motivated by prevailing theories of persuasion, and
three different post-training methods—including supervised fine-tuning and reward modelling—explicitly
designed to maximize AI persuasiveness. Using LLMs and professional human fact-checkers, we then count and
evaluate the accuracy of 466,769 fact-checkable claims made by the LLMs across more than 91,000 persuasive
conversations. The resulting dataset is to our knowledge the largest and most systematic investigation of AI
persuasion to date, offering an unprecedented window into how and when conversational AI can influence
human beliefs. Our findings thus provide a foundation for anticipating how persuasive capabilities could
evolve as AI models continue to develop and proliferate, and help identify which areas may deserve particular
attention from researchers, policymakers and technologists concerned about its societal impact.

Results

In all studies, UK adults engaged in a back-and-forth conversation (2 turn minimum, 10 turn maximum) with
an LLM. Before and after the conversation, they reported their level of agreement with a series of written
statements expressing a particular political opinion relevant to the UK, using a percentage point scale. In the
treatment group, the LLM was prompted to persuade the user to adopt a pre-specified stance on the issue,
using a persuasion strategy randomly selected from one of 8 possible strategies (see Methods). Throughout,
we measure the persuasive effect as the difference in mean post-treatment opinion between the treatment
group and a control group in which there was no persuasive conversation (unless stated otherwise). Although
participants were crowd-workers with no obligation to remain beyond 2 conversation turns to receive a fixed
show-up fee, treatment dialogues lasted an average of 7 turns and 9 minutes (see Methods for more detail),
implying that participants were engaged by the experience of discussing politics with AI.
Before addressing our main research questions, we begin by validating key motivating assumptions of our
work: that conversing with AI (i) is meaningfully more persuasive than exposure to a static AI-generated
message and (ii) can cause durable attitude change. To validate (i), we included two static-message conditions
in which participants read a 200-word persuasive message written by GPT-4o (study 1) or GPT-4.5 (study 3)
but did not engage in a conversation. As predicted, the AI was substantially more persuasive in conversation
than via static message, both for GPT-4o (+2.94pp, +41% more persuasive, p < .001) and GPT-4.5 (+3.60pp,
+52% more persuasive, p < .001). To validate (ii), in study 1 we conducted a follow-up one month after
the main experiment, which showed that between 36% (chat 1, p < .001) and 42% (chat 2, p < .001) of the
immediate persuasive effect of GPT-4o conversation was still evident at recontact—demonstrating durable
changes in attitudes (see SM Section 2.2 for complete output).

Persuasive returns to model scale

We now turn to our first research question: the impact of scale on AI model persuasiveness (RQ1). To do so,
we evaluate the persuasiveness of 17 unique base LLMs (see Table 1), spanning four orders of magnitude in
scale (measured in effective pre-training compute [34]; see Methods). Some of these models were open-source
models which we uniformly post-trained for open-ended conversation (using 100k examples from Ultrachat
[14] — “chat-tuned” models; see Methods for details). By holding the post-training procedure constant
across models, the chat-tuned models allow for a clean assessment of the association between model scale and
persuasiveness. We also examined a number of closed-source models (such as GPT-4.5 from OpenAI and
Grok-3-beta from xAI) that have been extensively post-trained by well-resourced frontier labs using opaque,
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Table 1: Parameters, pre-training tokens, effective compute, and post-training (open-source, Frontier, and PPT (persuasive
post-training)) for all base models across the three studies. Ranks are within each study; values marked ≈ are approximate.

Study Rank Model Name Parameters
Pre-training
Tokens (T)

Effective
Compute

(FLOPs, 1E21)
Post-training

1 1 Qwen1.5-0.5B 0.5 B 2.4 7.20 open-source
2 Qwen1.5-1.8B 1.8 B 2.4 25.92 open-source
3 Qwen1.5-4B 4 B 2.4 57.60 open-source
4 Qwen1.5-7B 7 B 4.0 168.00 open-source
5 Llama3-8B 8 B 15.0 720.00 open-source
6 Qwen1.5-14B 14 B 4.0 336.00 open-source
7 Qwen1.5-32B 32 B 4.0 768.00 open-source
8 Llama3-70B 70 B 15.0 6300.00 open-source
9 Qwen1.5-72B 72 B 3.0 1296.00 open-source
10 Qwen1.5-72B-chat 72 B 3.0 1296.00 frontier
11 Qwen1.5-110B-chat 110 B 4.0 1980.00 frontier
12 Llama3-405B 405 B 15.0 36450.00 open-source
13 GPT-4o Unknown Unknown ≈38100.00* frontier

2 1 Llama-3.1-8B 8 B 15.6 748.80 open-source +
PPT

2 GPT-3.5-turbo ≈20 B* Unknown ≈2578.00* Frontier + PPT
3 Llama-3.1-405B 405 B 15.6 37908.00 open-source +

PPT
4 GPT-4o Unknown Unknown ≈38100.00* Frontier + PPT
5 GPT-4.5 Unknown Unknown ≈210000.00** Frontier + PPT

3 1 GPT-4o-old (6 Aug 2024) Unknown Unknown ≈38100.00* Frontier + PPT
2 GPT-4o-new (27 Mar 2025) Unknown Unknown ≈38100.00* Frontier + PPT
3 GPT-4.5 Unknown Unknown ≈210000.00** Frontier + PPT
4 Grok-3-beta Unknown Unknown ≈464000.00* Frontier + PPT

* Effective compute estimates from EpochAI.
** Industry insiders (e.g.here or here) suggest GPT-4.5 was pre-trained on ≈10 × the compute of GPT-4. Multiplying EpochAI’s GPT-4
estimate (2.1 × 1025 FLOPs) by 10 yields 2.1 × 1026.

heterogeneous methods (“developer post-trained” models). Testing these developer post-trained models gives
us a window into the persuasive powers of the most capable models. However, because they are post-trained
in different (and unobservable) ways, model scale may be confounded with post-training for these models,
making it more difficult to assess the association between scale and persuasiveness.
In Figure 1 we show the estimated persuasive impact of a conversation with each LLM. Pooling across
all models (our pre-registered specification) we find a positive linear association between persuasive impact
and the logarithm of model scale (Figure 1 dashed black line), suggesting a reliable persuasive return to
model scale: +1.59pp Bayesian 95% CI [1.07, 2.13] increase in persuasion for an order of magnitude increase
in model scale. Importantly, we find a positive linear association of similar magnitude when we restrict to
chat-tuned models only (+1.83pp [1.42, 2.25], Figure 1 purple), where post-training is held constant by
design. Conversely, among developer post-trained models where post-training is heterogeneous and may be
confounded with scale, we do not find a reliable positive association (+0.32pp [−1.18, 1.85], Figure 1, green;
significant difference between chat-tuned and developer post-trained models, −1.41pp [−2.76, −0.13]). For
example, GPT-4o (3/27/2025) is more persuasive (11.76pp) than models thought to be considerably larger in
scale: GPT-4.5 (10.51pp, difference test p = .004) and Grok-3 (9.05pp, difference test p < .001), as well as
models thought to be equivalent in scale, such as GPT-4o with alternative developer post-training (8/6/2024)
(8.62pp, difference test p < .001) (see SM Section 2.3 for full output tables).
Overall, these results imply that model scale may deliver reliable increases in persuasiveness (although it is
hard to assess the impact of scale among developer post-training because of heterogeneous post-training).
Crucially, however, these findings also suggest that the persuasion gains from model post-training may be
larger than the returns to scale. For example, our best-fitting curve (pooling across models and studies)
predicts that a model trained on 10× or 100× the compute of current frontier models would yield persuasion
gains of +1.59pp and +3.19pp, respectively. This is smaller than the difference in persuasiveness we observed
between two equal-scale deployments of GPT-4o in study 3 that otherwise varied only in their post-training:
4o (3/25) vs. 4o (8/24) (+3.50pp in a head-to-head difference test, p < .001, see SM Section 2.3.2). Thus,
we observe that persuasive returns from model scale can easily be eclipsed by the type and quantity of
developer post-training applied to the base model, especially at the frontier.
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Figure 1: Persuasiveness of conversational AI increases with model scale. Shown is the persuasive
impact in percentage points (vs. control group) on the y-axis plotted against effective pre-training compute
(FLOPs) on the x-axis (logarithmic scale). Point estimates are raw average treatment effects with 95%
confidence intervals. The black solid line represents the association across all models assuming a linear
relationship, while colored lines show separate fits for models we uniformly chat-tuned for open-ended
conversation (purple) and models which were post-trained using heterogeneous, opaque methods by frontier
AI developers (green). For proprietary models (GPT-3.5, GPT-4o, GPT-4.5, Grok-3), where true scale is
unknown, we used scale estimates published by research organization Epoch AI [18].

Persuasive returns to model post-training

Given these results, next we more systematically examine the effect of post-training on persuasiveness.
We focus on post-training that is specifically designed to increase model persuasiveness (we called this
persuasiveness post-training or PPT) (RQ2). In Study 2, we test two PPT methods. First, we employed
supervised fine-tuning (SFT) using a curated subset of the 9,000 most persuasive dialogues from Study 1
(see Methods for inclusion criteria) to encourage the model to copy previously successful conversational
approaches. Second, we used 56,283 additional conversations (covering 707 political issues) with GPT-4o
to fine-tune a reward model (RM; a version of GPT-4o) that predicted belief change at each turn of the
conversation, conditioned on the existing dialogue history. This allowed us to enhance persuasiveness by
sampling a minimum of 12 possible AI responses at each dialogue turn, and choosing the response which
the RM predicted would be most persuasive (see Methods). We also examine the effect of combining these
methods, using an SFT-trained base model with our persuasion RM (SFT+RM). Together with a baseline
(where no PPT was applied), this 2 × 2 design yields four conditions (base, RM, SFT, and SFT+RM) which
we apply to both small (Llama3.1-8B) and large (Llama3.1-405B) open-source models.
We find that RM provides significant persuasive returns to these open-source LLMs (pooled main effect:
+2.32pp, p < .001). In contrast, there were no significant persuasion gains from SFT (+0.26, p = 0.230), and
no significant interaction between SFT and RM (p = 0.558); see Figure 2A. Thus, we find that PPT can
substantially increase the persuasiveness of open-source LLMs, and that RM appears to be more fruitful than
SFT. Notably, applying RM to a small open-source LLM (Llama3.1-8B) increased its persuasive effect from
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Figure 2: Persuasion post-training (PPT) can substantially increase the persuasiveness of
conversational AI. (A) Persuasive impact of Llama3.1-8B and Llama3.1-405B models under four conditions:
supervised fine-tuning (SFT), reward modeling (RM), combined SFT + RM, and Base (no PPT). (B)
Persuasive impact of Base and RM in study 2. (C) Persuasive impact of Base and RM in Study 3. All
panels show persuasive impact in percentage points (vs. control group) with 95% confidence intervals.
Note: In (A), “Base” refers to open-source versions of a model fine-tuned for open-ended dialogue but with
no persuasion-specific post-training; in (B) and (C) it refers to unmodified closed-source models deployed
out-of-the-box with no additional post-training. Models were prompted with one of a range of persuasion
strategies. See Methods for training details.

approximately 6pp to 9pp, making it as or more persuasive than the much larger and more expensive frontier
model GPT-4o (8/24). (See SM Section 2.4 for full output tables.)
Finally, we also examine the effects of RM on developer post-trained frontier models. (Many of these models
are closed-source, rendering SFT infeasible). Specifically, we compare base vs. RM-tuned models for GPT-3.5,
GPT-4o (8/24) and GPT-4.5 in Study 2, and GPT-4o (8/24 and 3/25), GPT-4.5 and Grok-3 in Study 3.
We find that on average our RM procedure also increases the persuasiveness of these models (pooled across
models, Study 2 RM: −0.08pp, p = 0.864; Study 3 RM: +0.80pp, p < .001; precision-weighted average across
studies: +0.63pp, p = .003, see Figure 2B-C), although the effect increase is smaller than we found for
the open-source models. This could be due to models with frontier post-training generating more consistent
responses, and thus offering less variable samples for the RM to select between (see SM Section 2.10).

How do models persuade?

Next we examine which strategies underpin effective AI persuasion (RQ3). First, given widespread concern
that AI systems will be able to ‘microtarget’ their arguments to increase their persuasiveness for specific
individuals [51, 39, 49, 56, 25], we consider the effect of providing the LLM with information about the user
(personalization). We test three personalization methods across studies: (1) prompt-based personalization,
where participants’ initial attitude score (0–100 scale) and an open-ended reflection explaining their initial
attitude were appended to model prompts, (2) SFT on personalized data, where models were post-trained
on datasets containing participants’ attitudes and reflections plus 9 pieces of demographics and political
information (e.g., age, gender, political ideology, party affiliation), and (3) personalized RM, where a reward
model was trained to select persuasive responses using all the aforementioned personalization data during
both training and inference (see Methods for further details). Pooling across all personalization methods
and studies, the overall precision-weighted average effect of personalization (relative to no personalization) is
+0.43pp 95% CI [0.22, 0.64]. Furthermore, across individual methods and studies, the effect of personalization
is similarly sized and never exceeds 1pp (see SM Section 2.5). Thus, while we do find some evidence of
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persuasive returns to personalization, they are small in comparison to the magnitude of the persuasion gains
we document from model scale and post-training.
We then examined how the model’s rhetorical strategy impacted persuasive success. In each conversation,
we randomized the LLM’s prompt to instruct it to use one of eight theoretically motivated strategies for
persuasion, such as moral reframing [33, 60, 19], storytelling [32, 27, 24], deep canvassing [5, 52], and
information-based argumentation (in which an emphasis is placed on providing facts and evidence) [46, 11],
as well as a basic prompt (only instruction: “Be as persuasive as you can”). The persuasive impact of each
strategy, relative to the basic prompt, is shown in Figure 3A. The prompt encouraging LLMs to provide
new information was the most successful at persuading people: compared against the basic prompt, the
information prompt was +2.29pp [1.84, 2.75] more persuasive, while the next-best prompt was only +1.37pp
[0.92, 1.81] more persuasive than the basic prompt (these are precision-weighted averages across studies, see
SM Section 2.6.1 for breakdown by study). In absolute persuasion terms, the information prompt was 27%
more persuasive than the basic prompt (10.60pp vs. 8.34pp, p < .001). Notably, some prompts performed
significantly worse than the basic prompt (e.g., moral reframing and deep canvassing, Figure 3A). This
suggests that LLMs may be successful persuaders insofar as they are encouraged to pack their conversation
with facts and evidence that appear to support their arguments—that is, to pursue an information-based
persuasion mechanism [11]—more so than employing other psychologically-informed persuasion strategies.
To further investigate the role of information in AI persuasion, we combined GPT-4o and professional human
fact-checkers to count the number of fact-checkable claims made in the 91,000 persuasive conversations
(‘information density’) (see Methods). (In a validation test, the counts provided by GPT-4o and human
fact-checkers were correlated at r = 0.87, 95% CI [0.84, 0.90]; see Methods and SM Section 2.8 for
further details). As expected, information density is consistently largest under the information prompt
relative to the other rhetorical strategies (Figure 3B). More importantly, we find that information density
for each rhetorical strategy is in turn strongly associated with how persuasive the model is when using
that strategy (Figure 3B), implying that information-dense AI messages are more persuasive. Indeed, the
average correlation between information density and persuasion is r = 0.76, Bayesian 95% CI [0.05, 0.99], and
the average slope implies that each new additional piece of information corresponded with an increase in
persuasion of +0.30pp [0.23, 0.38] (Figure 3B) (see Methods for analysis details).
Furthermore, across the many conditions in our design, we observe that factors that increased information
density also systematically increased persuasiveness. For example, the most persuasive models in our
sample (GPT-4o 3/25 and GPT-4.5) were at their most persuasive when prompted to use information
(Figure 3C). This prompting strategy caused GPT-4o (3/25) to generate more than 25 fact-checkable
claims per conversation on average, compared to < 10 for other prompts (p < .001) (Figure 3D). Similarly,
we find that our reward modeling (RM) PPT reliably increased the average number of claims made by
our chat-tuned models in Study 2 (+1.15 claims, p < .001, Figure 3E), where we also found it clearly
increased persuasiveness (+2.32pp, p < .001). By contrast, RM caused a smaller increase in the number
of claims among developer post-trained models (e.g., in Study 3: +0.32 claims, p = .053) and it had a
correspondingly smaller impact on persuasiveness there (+0.80pp, p < .001) (Figure 3E). Finally, in a
supplementary analysis we conduct a two-stage regression to investigate the overall strength of this association
across all randomized conditions. We estimate that information density explains 44% of the variability in
persuasive effects generated by all of our conditions, and 75% when restricting to developer post-trained
models (see Methods for further details). In sum, we find consistent evidence that factors which most
increased persuasion—whether via prompting or post-training—tended to also increase information density,
suggesting information density is a key variable driving the persuasive power of current AI conversation.

How accurate is the information provided by the models?

The apparent success of information-dense rhetoric motivates our final analysis: how factually accurate is
the information deployed by LLMs to persuade? To test this, we used a web-search enabled LLM (gpt-4o-
search-preview) tasked with evaluating the accuracy of claims (on a 0–100 scale) made by AI in the large
body of conversations collected across studies 1–3. The procedure was independently validated by comparing
a subset of its ratings to ratings generated by professional human fact-checkers, which yielded a correlation of
r = 0.84, 95% CI [0.79, 0.88] (see Methods and SM Section 2.8 for details).
Overall, the information provided by AI was broadly accurate: pooling across studies and models the mean
accuracy was 77/100 and 81% of claims were rated as accurate (accuracy > 50/100). However, these averages
obscure considerable variation across the models and conditions in our design. In Figure 4A we plot the
estimated proportion of claims rated as accurate against model scale (in SM Section 2.7 we show that
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Figure 3: Persuasion increases with information density. (A) Of eight prompting strategies, the
information prompt—instructing the model to focus on deploying facts and evidence—yields the largest
persuasion gains across studies (dark points shown precision-weighted average effects across study-chats).
(B) Shown is mean policy support and mean information density (number of fact-checkable claims per
conversation) for each of our eight prompts in each study-chat. The information prompt yields the greatest
information density, which in turn strongly predicts persuasion (meta-analytic slope and correlation coefficients
annotated inset). (C) The persuasive advantage of the most persuasive models (GPT-4o 3/25, GPT-4.5) over
GPT-4o (8/24) is largest when they are information-prompted (see SM Section 2.6.2 for interaction tests).
(D) Information prompting also causes a disproportionate increase in information density among the most
persuasive models (see SM Section 2.6.2 for interaction tests). (E) Shown are main effects of persuasion
post-training (vs. Base) on both information density and persuasion. Where PPT increases persuasiveness, it
also reliably increases information density. RM = reward modeling; SFT = supervised fine-tuning. In all
panels, error bars are 95% confidence intervals.
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Figure 4: Factors which made conversational AI more persuasive tended to decrease factual
accuracy. (A) Proportion of AI claims rated as accurate (>50 on 0-100 scale) as a function of model
scale. Chat-tuned models (purple) show increasing accuracy with scale, while developer post-trained models
(green) exhibit high variance despite frontier scale. Notably, GPT-4.5 (Study 2) and Grok-3 (Study 3) achieve
accuracy comparable to much smaller models. Note: Some model labels have been removed for clarity. (B)
The information prompt—the most effective persuasion strategy—causes substantial accuracy decreases
relative to other prompts, and disproportionate decreases among the most persuasive models (GPT-4o 3/25
and GPT-4.5) compared with GPT-4o 8/24 (see SM Section 2.6.2 for interaction tests). (C) Shown are
main effects of persuasion post-training (vs. Base) on both accuracy and persuasion. Where PPT increases
persuasiveness, it tends to decrease accuracy. RM = reward modeling; SFT = supervised fine-tuning. In all
panels, error bars are 95% confidence intervals.

the results below are substantively identical if we instead analyze average accuracy on the full 0–100 scale).
Among chat-tuned models—where post-training is held constant while scale varies—larger models were
reliably more accurate. However, at the frontier, where models vary in both scale and the post-training
conducted by AI developers, we observe large variation in model accuracy. For example, despite being orders
of magnitude larger in scale and presumably having undergone significantly more post-training, claims made
by OpenAI’s GPT-4.5 (study 2) were rated inaccurate > 30% of the time—a figure roughly equivalent to our
much smaller chat-tuned version of Llama3.1-8B. Indeed, and surprisingly, we also find that GPT-3.5—a
model released more than 2 years earlier than GPT-4.5—made ∼ 13pp fewer inaccurate claims (Figure 4A).
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We document another disconcerting result: while the biggest predictor of a model’s persuasiveness was the
amount of fact-checkable claims (information) that it deployed, we observe that the models with the highest
information density also tended to be less accurate on average. First, among the most persuasive models in our
sample, the most persuasive prompt—that which encouraged the use of information—significantly decreased
the proportion of accurate claims made during conversation (Figure 4B). For example, GPT-4o (3/25) made
substantially fewer accurate claims when prompted to use information (62%) vs. a different prompt (78%;
difference test p < .001). We observe similarly large drops in accuracy for an information-prompted GPT-4.5
in Study 2 (56% vs. 70%, p < .001) and Study 3 (72% vs. 82%, p < .001). Second, while applying reward
modeling PPT to chat-tuned models increased their persuasiveness (+2.32pp p < .001), it also increased their
proportion of inaccurate claims (−2.22pp fewer accurate claims, p < .001) (Figure 4C). Conversely, SFT on
these same models significantly increased their accuracy (+4.89pp, p < .001) but not their persuasiveness
(+0.26pp, p = .230). Third and finally, we previously showed that new developer post-training on GPT-4o
(3/25 vs. 8/24) dramatically increased its persuasiveness (+3.50pp, p < .001, Figure 1); it also substantially
increased its proportion of inaccurate claims (−12.53pp fewer accurate claims, p < .001, Figure 4A).
Notably, the above findings are equally consistent with inaccurate claims being either a byproduct or cause of
the increase in persuasion. We find some evidence in favor of the former (byproduct): in Study 2 we included
a treatment arm in which we explicitly told Llama3.1-405B to use fabricated information (Llama3.1-405B-
deceptive-info, Figure 4A). This increased the proportion of inaccurate claims vs. the standard information
prompt (+2.51pp, p = .006), but did not significantly increase persuasion (−0.73pp, p = .157). Furthermore,
across all conditions in our study, we do not find evidence that persuasiveness was positively associated with
the number of inaccurate claims after controlling for the total number of claims (see Methods for details).
Finally, we investigated the impact of a conversational AI designed for maximal persuasion considering all
features examined in our study (model, prompt, personalization, post-training), using a cross-fit machine
learning approach to identify the most persuasive conditions (see Methods for details). We estimate that
the persuasive effect of such a maximal-persuasion AI is 15.9 pp (69.1% higher than the 9.4 pp average
condition we tested), and 26.5 pp among participants who initially disagreed with the issue (74.3% higher
than the 15.2 pp average). These effects are substantively large, even relative to those observed in other recent
literature on conversational persuasion with LLMs [12, 53]. We further find that, in these maximal-persuasion
conditions, AI made 22.1 fact-checkable claims per conversation (vs. 5.6 average), and that 29.7% of these
claims were inaccurate (vs. 16.0% average). These results highlight the risk that AI models designed for
persuasion may come at the cost of providing substantial amounts of inaccurate information.

Discussion

Despite widespread concern about AI-driven persuasion [36, 7, 31, 49, 16, 23, 43, 3, 29, 22, 37, 30, 15], the
factors that determine the nature and limits of AI persuasiveness have remained unknown. Here, across
three large-scale experiments involving 76,977 U.K. participants, 707 political issues, and 19 LLMs, we
systematically examined how model scale and post-training methods may contribute to the persuasiveness of
current and future conversational AI systems. Further, we investigated the effectiveness of various popular
mechanisms hypothesized to increase AI persuasiveness—including personalization to the user and eight
theoretically motivated persuasion strategies—and we examined the volume and accuracy of more than
466,000 fact-checkable claims made by the models across 91,000 persuasive conversations.
We found that, holding post-training constant, larger models tend to be more persuasive. Strikingly, however,
the largest persuasion gains from frontier post-training (+3.50pp between different GPT-4o deployments)
exceeded the estimated gains from increasing model scale 10× – or even 100× – beyond the current frontier
(+1.59pp; +3.19pp, respectively). This implies that advances in frontier AI persuasiveness are more likely
to come from new frontier post-training techniques than from increasing model scale. Furthermore, these
persuasion gains were large in relative magnitudes; powerful actors with privileged access to such post-training
techniques could thus enjoy a substantial advantage from using persuasive AI to shape public opinion—further
concentrating these actors’ power. At the same time, we found that sub-frontier post-training (in which a
reward model was trained to predict which messages will be most persuasive) applied to a small open-source
model (Llama-8B) transformed it into an as or more effective persuader than frontier model GPT-4o (8/24).
Further, this is likely a lower bound on the effectiveness of RM: our RM procedure selected conversational
replies within—not across—prompts. Importantly, while this allowed us to isolate additional variance (in the
persuasiveness of conversational replies) not accounted for by prompt, it also reduced the variance available in
replies for the RM to capitalize on. RM selecting across prompts could likely perform better. This implies that
even actors with limited computational resources could use these techniques to potentially train and deploy
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highly persuasive AI systems, bypassing developer safeguards that may constrain the largest proprietary
models (now or in the future). This approach could benefit unscrupulous actors wishing, for example, to
promote radical political or religious ideologies or foment political unrest among geopolitical adversaries.
Crucially, we uncovered a key mechanism driving these persuasion gains: AI models were most persuasive
when they packed their dialogue with information—fact-checkable claims potentially relevant to their
argument. We found consistent evidence that insomuch as factors like model scale, post-training, or prompting
strategy increased information density, they also increased persuasion. Moreover, this association was strong:
approximately half of the explainable variance in persuasion caused by these factors was attributable to the
number of claims generated by the AI. Practically, this suggests that current AI systems are most persuasive
when providing large volumes of information, in contrast to other rhetorical techniques documented by
persuasion theory and prior empirical work, such as moral reframing [33, 60, 19], deep canvassing [5, 52] or
personalization [51, 39, 49, 56, 58]. Indeed, despite the widely expressed concerns about the persuasiveness of
AI-driven personalization, we consistently found that the persuasive effects of both simple and sophisticated
personalization ranked below those of model scale, post-training, and directly prompting the model to argue
using information. Insofar as information density is a key driver of persuasive success, this implies that AI
could exceed the persuasiveness of even elite human persuaders, given their unique ability to generate large
quantities of information almost instantaneously during conversation.
The centrality of information-dense argumentation in the persuasive success of AI raises a critical question:
is the information accurate? Across all models and conditions, we found that persuasive AI-generated claims
achieved reasonable accuracy scores (77/100, where 0 = completely inaccurate, 100 = completely accurate),
with only 19% of claims rated as predominantly inaccurate (≤ 50/100). However, we also document a
troubling potential tradeoff between persuasiveness and accuracy: the most persuasive models and prompting
strategies tended to produce the least accurate information, and post-training techniques that increased
persuasiveness also systematically decreased accuracy. While in some cases these decreases were small
(−2.22pp: RM vs. base among Llama models), in other cases they were large (−13pp: GPT-4o 3/25 vs.
GPT-4o 8/24). Moreover, we observe a concerning decline in the accuracy of persuasive claims generated
by the most recent and largest frontier models. For example, claims made by GPT-4.5 were judged to be
significantly less accurate on average than claims made by smaller models from the same family, including
GPT-3.5 and the version of GPT-4o (8/24) released in the summer of 2024, and were no more accurate
than substantially smaller models like Llama3.1-8B. Taken together, these results suggest that optimizing
persuasiveness may come at some cost to truthfulness, a dynamic that could have malign consequences for
public discourse and the information ecosystem.
Finally, our results conclusively demonstrate that the immediate persuasive impact of AI-powered conversation
is significantly larger than that of a static AI-generated message. This contrasts sharply with the results of
recent smaller-scale studies [2], and suggests a potential transformation of the persuasion landscape, where
actors seeking to maximize persuasion could routinely turn to AI conversation agents in place of static one-way
communication. This result also validates the predictions of long-standing theories of human communication
that posit conversation is a uniquely persuasive format [1, 42, 40], and extends prior work on scaling AI
persuasion by suggesting that conversation could enjoy greater returns to scale than static messages [26].
What do these results imply for the future of AI persuasion? Taken together, our findings suggest that the
persuasiveness of conversational AI could likely continue to increase in the near future. However, several
important constraints may limit the magnitude and practical impact of this increase. First, the computational
requirements for continued model scaling are considerable: it is unclear whether or how long investments
in compute infrastructure will enable continued scaling [55, 18, 47]. Second, influential theories of human
communication suggest there are hard psychological limits to human persuadability [41, 42]; if so, this
may limit further gains in AI persuasiveness. Third, and perhaps most importantly, real-world deployment
of AI persuasion faces a critical bottleneck: while our experiments show that lengthy, information-dense
conversations are most effective at shifting political attitudes, the extent to which people will voluntarily
sustain cognitively demanding political discussions with AI systems outside of a survey context remains unclear
(e.g., due to lack of awareness or interest in politics and competing demands on attention [48, 13, 8]). Indeed,
preliminary work suggests that the very conditions that make conversational AI most persuasive—sustained
engagement with information-dense arguments—may also be those most difficult to achieve in the real world
[8]. Thus, while our results show that more capable AI systems may achieve greater persuasive influence
under controlled conditions, the upper limit and practical impact of these increases is an important topic for
future work.
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In sum, our findings clarify where the real levers of AI persuasiveness lie—and where they do not. The
persuasive power of near-future AI is likely to stem less from model scale or personalization, and more
from post-training and prompting methods that mobilize LLMs use of information. As both frontier and
sub-frontier models grow more capable, ensuring this power is used responsibly will be a critical challenge.

1 Methods

This research was approved by the Oxford Internet Institute’s Departmental Research Ethics Committee
(reference number OII_C1A_24_012), a Research Assurance board at the UK AI Security Institute, and
the MIT Committee on the Use of Humans as Experimental Subjects (reference number E-6335). Informed
consent was obtained from all participants. All studies were pre-registered on Open Science Framework
(in the analysis section below we explicitly note where analyses were pre-registered vs. exploratory). All
code and replication materials are publicly available in our project Github repository. For additional study
materials consult our Supplementary Materials.
This research contains data from three studies, all of which were online survey experiments. In each study,
participants completed one or more distinct conversations (Chats 1–4) with LLMs. Study 1 included Chats 1
and 2, which addressed the scaling curve analysis (Chat 1) and collected data for persuasion post-training
(PPT) (Chat 2). Study 2 tested the effects of PPT (Chat 3). Study 3 addressed outstanding questions from
the previous two studies (Chat 4).

1.1 Participants

We recruited participants for all studies using the online crowd-sourcing platform Prolific, which prior work
found outperforms other recruitment platforms in terms of participant quality [45, 57]. All participants were
English-fluent adults (18+) in the UK. The studies were conducted between December 4th, 2024 and May
12th, 2025 and involved a total of 76,977 participants with non-missing outcome variables (Study 1: N =
29,560; Study 2: N = 27,605; Study 3: N = 19,812). Exact study dates and demographic information about
the participants can be found in SM Sections 1 and 2.1.
Participants who failed a pre-treatment writing screener were not able to take part in the respective study.
Additionally, some participants who passed the screener dropped out after treatment assignment but before
providing their outcome variable, resulting in overall post-treatment attrition rates of 3.53% (Study 1 chat 1),
1.72% (Study 1 chat 2), 2.70% (Study 2), and 3.21% (Study 3). Across the various randomized conditions in
our study designs, there was some evidence that this small amount of post-treatment attrition was differential
across conditions (see SM Section 2.9). Thus, for all of the results reported here, we conduct a robustness
analysis in which we impute the post-treatment missing outcomes with participants’ pre-treatment attitudes,
finding that all of our key results remain substantively identical after this imputation (see SM Section 2).

1.2 Model Post-training

Across all studies, models were deployed with one of four post-training techniques.

• Supervised Fine-tuning (SFT): Model weights were updated towards the distributions found in
a training set of 9,270 highly persuasive conversations from Chats 1 and 2, allowing the model to
learn to “mimic” successful patterns or persuasion strategies (see SM Section 3.2.2 for details).

• Reward Modeling (RM) with a best-of-k re-ranker: GPT-4o was trained (via the OpenAI
fine-tuning API) as a RM on 56,283 persuasive conversations from Chats 1 and 2 to predict a
persuasive outcome, given a conversation up-to-a-point. This allowed the RM to score, at each
conversation turn, the single best reply from a set of 12 (study 2) or 20 (study 3) candidates produced
by a Base model (see SM Section 3.2.3 for details).

• Combined Approach (SFT+RM): Same as RM, except the SFT-trained model generates
candidate responses instead of a Base model.

• Out-of-the-box / generic chat-tuning (Base): refers to both: (a) closed-source models we
could not fine-tune and thus used out-of-the-box, and (b) open-source models fine-tuned for generic
(non-persuasive) open-ended dialogue using 100,000 filtered conversations from the Ultrachat dataset
[14] (see SM Section 3.2.1 for details).
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In Study 1, all models used Base post-training. In Study 2, all open-source models were deployed with all
post-training types (Base, SFT, RM), and all closed-source models were deployed using both Base and RM.
Study 3 tested only closed-source models, each deployed with both Base and RM.

1.3 Issue Selection

In Study 1 (chat 1), we selected 10 issue stances from YouGov polls, chosen based on three criteria: diverse
policy domains (including healthcare, education, environment, transportation, housing, immigration, taxation,
and national security); moderate initial public support to avoid ceiling or floor effects in measuring attitude
change; and a balance of liberal and conservative positions ((see SM Section 4.5 for full list).
In Study 1 (chat 2) and Studies 2 and 3, we broadened our issue set. To ensure robust coverage over a range
of salient domains, we developed our issue set in two stages, integrating both existing YouGov data and
expert selection. First, we scraped the YouGov website for all publicly available issue topics, resulting in
611 topics. We used GPT-4o to remove topics that were a) not relevant to contemporary U.K. political
discourse, b) hyper-specific to the U.K. context (i.e. those that wouldn’t be relevant in, e.g. a U.S. context)
or c) directly referencing individual people. After filtering, 384 topics remained.
Second, we manually identified 15 primary issue areas central to UK political debate, such as Economy
and Jobs, Healthcare, Education, Foreign Policy, National Security and Defense, Immigration, and Climate
Change and Environment (see SM Section 4.5 for full list). GPT-4o generated six sub-topics within each
primary area. For example, “Economy and Jobs” included sub-topics like “Cost of living crisis and inflation,”
“Housing affordability and mortgage rates,” and “Public sector pay and strikes” (see SM Section 4.5 for
full list). GPT-4o then produced four distinct policy stances for each sub-topic, two liberal-leaning and two
conservative-leaning. In total, this process yielded 360 issue stances. In total, these two stages yielded 744
distinct issue stances. As a final curation step, we manually reviewed and filtered these to exclude irrelevant,
unclear, inappropriate, or awkwardly phrased issues.
This resulted in a final refined set of 697 uniformly phrased issue stances, covering a variety of issue areas,
which we used in Study 2 and Study 3. For further description of our issue set, please see SM Section 4.5.
For a full list of all issue stances and associated metadata, consult our project repository.

1.4 Prompting for persuasiveness

LLMs can be sensitive to minor changes to input prompts [50, 17, 54, 62]. Additionally, there are a number
of conversational persuasion techniques models could be instructed to employ. Therefore, to ensure the
generalizability of our results, in all studies, models were randomized to a prompt using one of eight rhetorical
strategies previously established by political persuasion literature (full prompt text can be found in SM
Section 4.4.2):

1. Information: Focuses on presenting lots of high-quality facts, evidence, and information [46, 11].
2. Deep canvassing: Focuses first on comprehensively eliciting or listening to the users’ views, before

providing arguments [5, 52].
3. Storytelling: Focuses on sharing personal experiences and building compelling narratives [32, 27, 24].
4. Norms: Focuses on demonstrating that others (especially similar or important others) agree with

the issue stance [9, 11].
5. Moral re-framing: Aligns support for the issue stance with the target audience’s core moral values

[33, 60, 19].
6. Debate: Draws on a combination of distinct rhetorical elements collated via examination of transcripts

of political debates in the UK House of Commons and Lords [4].
7. Mega: Model is given descriptions of all of the above strategies, can adaptively choose to use any or

none.
8. None: Model is given no particular strategies, and is simply told to “be as persuasive as possible”.

1.5 Personalization

We tested personalization using three distinct methods, each intended to enhance the model’s ability to tailor
persuasion to individual users.
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1. Prompt-based personalization (Study 1): In Study 1, we applied a simple prompt-based
personalization approach. For participants assigned to the personalized condition, we appended to
each model prompt (a) the participant’s initial attitude score (0–100 scale), and (b) their open-ended
reflection explaining their initial attitude.

2. Fine-tuning on personalized data (Study 2): In Study 2, we fine-tuned models using a
mixed dataset in which ∼50% of training conversations included personalized information. In these
personalized cases, models received participants’ initial attitudes and free-text justifications as well as
participants’ demographic and political information (age, gender, education, ideology, party affiliation,
political knowledge, AI trust, attitude confidence, and issue importance).

3. Personalized reward modeling (Studies 2 and 3): In Studies 2 and 3, we trained a RM on
data where ∼50% of conversations included personalized context. For these personalized cases,
models received initial attitudes and free-text justifications as well as participants’ demographic
and political information (age, gender, education, ideology, party affiliation, political knowledge, AI
trust, attitude confidence, and issue importance). During inference, we randomized whether the RM
received personalization information (50% chance). This allowed us to assess whether incorporating
richer personalization data improved the RM’s ability to select persuasive responses.

1.6 Experiment design

Studies 1–3 were all randomized survey experiments following a common design. Participants first passed a
short writing screener, read a consent form that explained the study may involve conversation with an AI
model, supplied core demographics, and were randomly assigned a single contemporary political issue. They
then completed an identical three-item baseline attitude scale for that issue (measured on a 0–100 scale) and
were asked to explain their attitude in an open-ended text box.
In all studies, participants were variously randomized with respect to (i) whether the interaction took the
form of a multi-turn dialogue or exposure to a static, LLM-generated message, (ii) the specific LLM family,
LLM, or post-training type, (iii) whether the LLM employed personalization (message generated with vs.
without the participant’s personal data), and (iv) one of eight predefined rhetorical persuasion strategies.
After engaging with their assigned treatment, all participants immediately repeated the same issue attitude
scale, provided an open-text rationale for any shift in attitudes between pre- and post-treatment, responded
to a series of rating questions about their conversation, and received a debrief. Full allocation probabilities
for each study, LLM specifications, and all question wordings are in SM Section 3.1.

1.7 Statistical Analysis

For ease of interpretation, we describe our statistical analyses here broadly following the subsection format of
the Results section. Unless stated otherwise, to estimate treatment effects and other comparisons we use
OLS with robust (HC2) standard errors [38] and adjust for participants’ pre-treatment attitudes to increase
precision [20].

Conversation vs. static message and persuasion durability. To compare the effect of AI-driven
conversation and static messaging in studies 1 and 3, we exclude the control group and compute the difference
in mean post-treatment attitudes directly between these conditions in both studies. In study 3 we restrict
this comparison to the GPT-4.5 base model conversations, excluding the model which received our RM
post-training (this ensures a fair comparison, since it was the GPT-4.5 base model that generated the static
messages). To estimate the durability of the persuasive effects in study 1, to ensure a meaningful comparison,
we restrict the sample of participants to those who were assigned to GPT-4o and who had non-missing
outcomes both in the original study and the 1-month follow-up. The estimates are in SM Section 2.2.

Persuasive returns to model scale. We follow our pre-registered analysis protocol to estimate the
association between LLM scale and persuasiveness, which comprises three key steps. First, in each study
we estimate the average treatment effect of each LLM’s political conversations relative to the control group,
restricting to base LLMs only—that is, excluding study conditions where LLMs received RM or SFT. Second,
we pool across studies and regress these estimates onto a variable for LLM scale using robust Bayesian
meta-regression with study fixed effects [28]. We operationalize LLM scale as the logarithm (base 10) of its
“effective compute”, given by the number of floating point operations (FLOPs) [34]. Third, to account for
the fact that the association between LLM scale and persuasiveness may be either linear or nonlinear, we
fit two meta-regressions; one that assumes a linear association and one that flexibly allows for a nonlinear

13



association via fitting a generalized additive model (GAM) [10]. We then compare their out-of-sample
predictive accuracies by comparing their expected log pointwise predictive densities (ELPD), estimated via
leave-one-out cross-validation [59, 6]. We repeat this analysis three times: once for our joint scaling curve
analysis that includes both chat-tuned and developer post-trained LLMs (pre-registered), and then twice
more: among chat-tuned LLMs and developer post-trained LLMs separately (not pre-registered). In all cases
a linear association is preferred because the GAM does not show significantly greater predictive accuracy. To
estimate the interaction between LLM post-training type (chat-tuned or developer) and the scaling curve, we
fit a fourth meta-regression in which we interact the linear term for the logarithm of effective compute with a
dummy variable for post-training type. We summarize all estimates via the mean and 95% percentiles of the
posterior distribution. Full tables of results and diagnostics are in SM Section 2.3.1.

Persuasive returns to model post-training. To estimate the persuasive effects of our PPT strategies,
we compared them to the control group in the corresponding studies (2 and 3). To estimate the main effects
of SFT and RM, and their interaction, we excluded the control group and estimated the difference in mean
post-treatment attitudes directly between our different PPT conditions. Finally, to compute the average
effect of RM across the developer post-trained models in studies 2 and 3, we first fitted study-level regressions
with a dummy variable for RM (vs. not), restricting to developer post-trained models only and excluding the
control group, and then we averaged these estimates weighting by their precision. Full tables of results are in
SM Section 2.4.

Examining how the models persuade. To estimate the effects of personalization, in all studies we
restricted our sample to the treatment-dialogue conditions and created a dummy variable for personalization
(vs. no personalization). We then fitted separate regressions for each unique combination of study-chat (S1
chat1, S1 chat2, S2, S3), LLM type (chat-tuned or developer post-trained) and PPT type (base, SFT, RM,
SFT+RM). The overall effect was then calculated via precision-weighted averaging of these estimates (see
SM Section 2.5).
To estimate the effects of each prompt vs. the basic prompt, in all studies we restricted our sample to the
treatment-dialogue conditions and created a dummy variable for each prompt (vs. basic prompt). We then
fitted separate regressions for each unique combination of study-chat (S1 chat1, S1 chat2, S2, S3), and
the overall effect was calculated via precision-weighted averaging of these estimates across study-chats. To
estimate the absolute average treatment effect of the prompts (including the basic prompt), we repeated this
approach but compared each prompt (including basic) to the control condition. Full tables of results are in
SM Section 2.6.1.
We estimated the correlation and slope between information density and persuasion in two (pre-registered)
steps. First, we restricted our sample to the treatment-dialogue conditions and then for each study-chat
we grouped by prompt to estimate the mean number of claims (information density) made by the LLM as
well as participants’ post-treatment attitude (persuasion) at the prompt-level. We do this at the prompt
level because prompts were randomly assigned, thereby providing exogenous variation in both information
density and persuasion. Second, we then fitted two Bayesian meta-regressions on these estimates, pooling
across study-chats (with fixed effects for study-chats), to estimate both the correlation and slope between
information density and persuasion. This lets us account for the uncertainty in the prompt-level estimates,
thus appropriately “disattenuating” the correlation and slope estimates. See SM Section 2.6.1 for the
meta-regression outputs and Bayesian model diagnostics.
The estimates in Figure 4C were obtained by estimating the average treatment effect of the LLMs against
the control group separately for conditions where LLMs received (i) the information-prompt or (ii) any
other prompt. Notably, the difference in persuasion between (i) and (ii) is greater for both GPT-4.5 and
GPT-4o (3/25) than for GPT-4o (8/24)—shown by significant (p < .05) interaction effects—indicating that
our most persuasive models received a disproportionate increase in persuasion (vs. another frontier model)
when prompted to deploy information (full tables of results are in SM Section 2.6.2.).
The estimates in Figure 4D were obtained by estimating the average information density (N claims) for
each of the (i) and (ii) prompt subgroups and LLMs shown. Once again the difference in N claims between
(i) and (ii) is significantly greater for both GPT-4.5 and GPT-4o (3/25) than for GPT-4o (8/24)—indicating
that our most persuasive models received a disproportionate increase in information density (vs. another
frontier model) when prompted to deploy information (interaction effects p < .001, full tables of results are in
SM Section 2.6.2). The aforementioned interaction tests were pre-registered.
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Finally, we computed the main effects of RM and SFT (Figure 4E) on both persuasion and information
density by fitting a regression on the corresponding outcome variable (post-treatment attitudes or N claims)
separately for studies 2 and 3 and LLM type (chat-tuned or developer), with dummy variables for RM and
SFT (full tables of results are in SM Section 2.4).
To estimate the overall strength of association between information density and persuasion, we conducted a
cross-fit, two-stage regression analysis. In the first stage, a random forest was fit to estimate the average
information density in each randomized condition (based on study, model, post-training method, prompt and
personalization). In the second stage, we then used the random forest model’s out-of-fold predictions as input
into a linear regression model to predict post-treatment attitudes (including terms for pre-treatment attitudes
and study). Finally, to provide an estimate of variance explained, we compare the R2 of this linear model
to (a) a baseline regression that does not include predicted information density, and (b) an “upper-bound”
regression that additionally includes predictions from a random forest fit directly to predict mean attitude
change by condition.

Examining the accuracy of the information provided by the models. We estimated the average
accuracy of claims made by individual LLMs (Figure 4A) in two steps. First, for each participant-LLM
conversation, we calculated the proportion of fact-checkable claims that were rated > 50/100 on the accuracy
scale. Second, for each study-chat, we restricted to treatment-dialogues by base LLMs only, and then
computed the mean proportion score for each LLM. Notably, this procedure excludes conversations where
there were zero claims made. As described in the main text, all of the results we describe are substantively
identical if we instead analyze the average accuracy score on the 0–100 scale (see SM Section 2.7.1).
The estimates in (Figure 4B) were obtained by estimating the average proportion of accurate claims
separately for conditions where LLMs received (i) the information-prompt or (ii) any other prompt. The
difference in accuracy between (i) and (ii) is greater for both GPT-4.5 and GPT-4o (3/25) than for GPT-4o
(8/24)—shown by significant (p < .001) interaction effects—indicating that our most persuasive models
saw a disproportionate decrease in claim accuracy (vs. another frontier model) when prompted to deploy
information (full tables of results are in SM Section 2.6.2).
We computed the main effects of RM and SFT (Figure 4C) on both persuasion and accuracy by fitting a
regression on the corresponding outcome variable (post-treatment attitudes or conversation-level accuracy
score) separately for chat-tuned models in study 2, with dummy variables for RM and SFT (full tables of
results are in SM Section 2.4).
To further test whether inaccurate claims are a byproduct or cause of increased persuasion, we performed an
OLS regression that estimated the average attitude change for every randomized condition in our design, as a
linear function of both the average number of inaccurate claims and total claims. In no study did we find a
significant positive coefficient on inaccurate claims when adjusting for total claims (see SM Section 2.7.2).
Finally, to estimate the impact of a conversational model designed for maximal persuasion across all randomized
features in our studies, we follow a cross-fit machine learning approach similar to that used in our analysis of
information density (described above). First, a random forest was fit to estimate the average attitude change
in each randomized condition (based on study, model, post-training method, prompt and personalization).
We then used the random forest model’s out-of-fold predictions to identify the 500 AI-conversations expected
to be most persuasive across our entire dataset (excluding Study 1 conversation 1, which used a different set
of issues). We report the observed average treatment effect of these 500 conversations.

1.8 Fact-checking

Fact Extraction. We used GPT-4o to extract fact-checkable claims from each individual LLM message
across all treatment-conversations in our data. In total, this resulted in N = 466,769 fact-checkable claims
extracted from N = 668,823 unique LLM messages. For the prompt used for fact extraction, see SM Section
4.4.4.

Fact-checking. Subsequently, we used a search-enabled version of OpenAI’s GPT-4o model (gpt-4o-search-
preview) to fact-check each claim. We instructed our fact-checking model to rate the veracity of each claim
on a 0–100 scale, where 0 is completely inaccurate and 100 is completely accurate. The model was also asked
to offer a brief justification for its score and provide links to any sources it used. All facts were checked with
search_context_size set to high. The LLM fact-checking pipeline was implemented between April 1st and
May 18th, 2025. For the full prompt used for fact-checking, see SM Section 4.4.4.
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Validation. To validate our AI fact-checking pipeline, we hired 2 professional fact-checkers from the KSJ
fact-checking project and the marketplace Upwork, and tasked them with evaluating a stratified sample of
198 LLM messages. The messages were from Study 1 Chat 2 (i.e., GPT-4o 8/24) and were stratified by the
(i) number of claims they contained and (ii) the average accuracy of those claims, such that (i) and (ii) were
evenly spaced from 0–10 and 0–100 respectively.
For each of the 198 messages, we asked the fact-checkers to count both the number of fact-checkable claims
contained within it, and to assign a 0–100 accuracy score to each of the resulting claims and message
overall. To estimate the correlation between fact-checker and LLM ratings, for each message we averaged the
fact-checker scores and then calculated the human-LLM correlation across the 198 messages—separately for
both the number of claims as well as the average accuracy (see SM Section 2.8 for break downs at the
individual fact-checker level).
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